f08 — Least-squares and FEigenvalue Problems (LAPACK) f08kuc

NAG C Library Function Document

nag zunmbr (f08kuc)

1 Purpose

nag_zunmbr (f08kuc) multiplies an arbitrary complex matrix C' by one of the complex unitary matrices ()
or P which were determined by nag zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2 Specification

void nag_zunmbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,
Nag_TransType trans, Integer m, Integer n, Integer k, const Complex al[],
Integer pda, const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zunmbr (f08kuc) is intended to be used after a call to nag_zgebrd (f08ksc), which reduces a complex
rectangular matrix A to real bidiagonal form B by a unitary transformation: A = QBP". nag zgebrd
(fO8ksc) represents the matrices) and P as products of elementary reflectors.

This function may be used to form one of the matrix products
Qc, Q"c, cq, cQ", pc, P"c, CP or CP",

overwriting the result on C' (which may be any complex rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

Note: in the descriptions below, r denotes the order of) or P if side = Nag_LeftSide, » = m and if
side = Nag_RightSide, » = n.

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: vect — Nag VectType Input
On entry: indicates whether Q or Q' or P or P is to be applied to C as follows:
if vect = Nag_ApplyQ, Q or Q" is applied to C;
if vect = Nag_ApplyP, P or P s applied to C.
Constraint: vect = Nag_ApplyQ or Nag_ApplyP.
3: side — Nag_SideType Input

On entry: indicates how Q or Q™ or P or P! is to be applied to C' as follows:

[NP3645/7] f08kuc. 1

fO8kuc NAG C Library Manual

if side = Nag_LeftSide, Q or Q7 or P or P is applied to C' from the left;

if side = Nag_RightSide, Q or Q" or P or P is applied to C' from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.

4: trans — Nag TransType Input

On entry: indicates whether Q or P or Q" or P¥ is to be applied to C as follows:
if trans = Nag NoTrans, () or P is applied to C;

if trans = Nag_ConjTrans, Q7 or P is applied to C.

Constraint. trans = Nag NoTrans or Nag_ConjTrans.

5: m — Integer Input
On entry: m¢, the number of rows of the matrix C.

Constraint: m > 0.

6: n — Integer Input
On entry: ng, the number of columns of the matrix C.

Constraint: n > 0.

7: k — Integer Input

On entry: if vect = Nag ApplyQ, the number of columns in the original matrix A; if
vect = Nag_ApplyP, the number of rows in the original matrix A.

Constraint: k > 0.

8: a[dim] — Complex Input/Output

Note: the dimension, dim, of the array a must be at least
max(1, pda x max(1, min(r,k))) when vect = Nag_ApplyQ and order = Nag_ColMajor;
max(1,pda x r) when vect = Nag ApplyQ and order = Nag RowMajor;
max(1,pda x r) when vect = Nag ApplyP and order = Nag_ColMajor;
max(1,pda x min(r, k))) when vect = Nag ApplyP and order = Nag_ RowMajor.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_ zgebrd
(f08ksc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor,
if vect = Nag_ApplyQ, pda > max(1,7);
if vect = Nag_ApplyP, pda > max(1, min(r, k));

if order = Nag_RowMajor,
if vect = Nag_ApplyQ, pda > max(1, min(r, k));
if vect = Nag_ApplyP, pda > max(1,r).

10: tau[dim| — const Complex Input

Note: the dimension, dim, of the array tau must be at least max(1, min(r, k)).

f08kuc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08kuc

11:

13:

6

On entry: further details of the elementary reflectors, as returned by nag zgebrd (fO8ksc) in its
parameter tauq if vect = Nag ApplyQ, or in its parameter taup if vect = Nag_ApplyP.
c[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pdec x n) when
order = Nag_ColMajor and at least max(1, pdc x m) when order = Nag_ RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pde + 4 — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix C' is stored in ¢[(i — 1) x pde+ j — 1].

On entry: the matrix C.
On exit: C is overwritten by QC or QHC or CQ or CQH or PC or P2C or CP or CP as

specified by vect, side and trans.
pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, k = (value).
Constraint: k > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pdc > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 2

On entry, vect = (value), k = (value), pda = (value).
Constraint: if vect = Nag_ApplyQ, pda > max(1,r);
if vect = Nag_ApplyP, pda > max(1, min(r, k)).

On entry, vect = (value), k = (value), pda = (value).
Constraint: if vect = Nag_ApplyQ, pda > max(1, min(r, Kk));
if vect = Nag_ApplyP, pda > max(1,r).

[NP3645/7] f08kuc.3

fO8kuc NAG C Library Manual

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix £ such that
1E]l, = O()[C]l,,

where ¢ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately
8nck(2me — k), if side = Nag_LeftSide and mo > k;
8mck(2ny — k), if side = Nag_RightSide and ng > k;
8minc, if side = Nag_LeftSide and m¢ < k;
8meng, if side = Nag_RightSide and no < k;

where k is the value of the parameter k.

The real analogue of this function is nag_dormbr (f08kgc).

9 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or LQ) factorization of A.

In the first example, m > n, and

0.96 —0.81¢ —0.03+0.96c —0.91+2.060 —0.05+0.41%
—098+4+198; —1.20+40.19¢ —0.66+0.42¢ —0.81 4 0.56¢
0.62 — 0.467 1.01 +0.02¢ 0.63 —0.17c —1.11 4 0.60¢
—0.37 4+ 0.38¢ 0.19 -0.54¢ —0.98 —0.36¢ 0.22 —0.20¢
0.83 4+ 0.51% 0.204+0.01¢ —0.17 —0.46¢ 1.47 4+ 1.59¢
1.08 —0.2817 0.20 —0.12¢ —0.07 + 1.23¢ 0.26 + 0.26¢

A:

The function first performs a QR factorization of A as A = (Q,R and then reduces the factor R to
bidiagonal form B: R = Q,BP. Finally it forms Q, and calls nag_zunmbr (f08kuc) to form Q = Q,Q,.

In the second example, m < n, and

0.28 —0.36¢ 0.50 —0.86¢ —0.77 — 0.48¢ 1.58 + 0.6617
A= —-050-1.10d —121+0.76¢ —0.32-0.24¢ —027—1.15¢
036 -0.512 —0.07+1.33¢: —0.7540.47; —-0.08 4 1.01%

The function first performs an L() factorization of A as A = LPfI and then reduces the factor L to
bidiagonal form B: L = QBP. Finally it forms P and calls nag zunmbr (f08kuc) to form
pi = plipH

f08kuc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.1 Program Text

/* nag_zunmbr (f08kuc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, ic, j, m, n, pda, pdph, pdu;

Integer d_len, e_len, tau_len, tauq len, taup_len;

Integer exit_status=0;

NagError fail;

Nag_OrderType order;

/* Arrays */

Complex #*a=0, #*ph=0, *tau=0, #*taup=0, *taug=0,
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]

#define U(I,J) ul(J-1)*pdu + I - 1]

#define PH(I,J) phl[(J-1)*pdph + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define U(I,J) ul(I-1)*pdu + JT - 1]

#define PH(I,J) ph[(I-1)*pdph + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08kuc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("$*[*\n] ");
for (ic = 1; ic <= 2; ++ic)
{
Vscanf ("$1d%s1ds*x["\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR

pda = m;
pdph = n;
pdu = m;
#else
pda = n;
pdph = n;
pdu = m;
#endif
tau_len = n;
taup_len = n;
tauqg_len = nj;
d_len = n;
e len = n - 1;
/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||
! (ph = NAG_ALLOC(n * n, Complex)) ||
! (tau = NAG_ALLOC(tau_len, Complex)) |
! (taup = NAG_ALLOC(taup_len, Complex)
! (taug = NAG_ALLOC(tauqg_len, Complex)
! (u = NAG_ALLOC(m * m, Complex)) ||
[NP3645/7]

I
)
)

*u=0;

fO8kuc

JO8kuc.5

1 (d NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥

/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3j)

Vscanf (" (%1f , %1f)", &A(i,Jj).re, &A(i,]) .1

¥
Vscanf ("sx["\n] ");
if (m >= n)
{
/* Compute the QR factorization of A */
f08asc(order, m, n, a, pda, tau, &fail);

NAG C Library Manual

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥
/* Copy A to U %/
for (i = 1; i <= m; ++i)

{
for (3 = 1; j <= n; ++3)
{
U(i,j).re = A(i,j).re;
U(l/j)-lm = A(lr])-lm;
3
}

/* Form Q explicitly, storing the result in U */
fO08atc(order, m, n, n, u, pdu, tau, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf ("Error from fO08atc.\n%s\n", fail.message);

exit_status = 1;
goto END;
¥
/* Copy R to PH (used as workspace) */
for (1 = 1; 1 <= n; ++1)
{
for (jJ = 1i; j <= n; ++3)
{
PH(i,j).re = A(i,3).re;
PH(i,j).im = A(i,7).im;
¥
}

/* Set the strictly lower triangular part of R to zero *x/

for (i = 2; 1 <= n; ++1)

{
for (j = 1; j <= MIN(i-1,n-1); ++j)
{
PH(i,j).re = 0.0;
PH(i,j).im = 0.0;
}
}

/* Bidiagonalize R */
f08ksc(order, n, n, ph, pdph, d, e, tauq,

&fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Update Q, storing the result in U =*/

f08kuc (order, Nag_FormQ, Nag_RightSide, Nag_NoTrans,
m, n, n, ph, pdph, tauq, u, pdu, &fail);

JO8kuc.6

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08kuc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print bidiagonal form and matrix Q =*/
Vprintf ("\nExample 1: bidiagonal matrix B\nDiagonal\n");
for (i = 1; i <= n; ++1i)
Vprintf ("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf ("\nSuper-diagonal\n") ;
for (1 =1; 1 <= n - 1; ++1)
Vprintf ("%8.4f%s", e[i-1], i%8 == 0 2"\n":" ");
Vprintf ("\n\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, pdu, Nag_BracketForm, "%7.4f",
"Example 1: matrix Q", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
else
{

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8avc.\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

/* Copy A to PH */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++3)
{
PH(i,j).re = A(i,]J).re;
PH(i,j).im = A(i,7).im;
b
}

/* Form Q explicitly, storing the result in PH */
f08awc (order, m, n, m, ph, pdph, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8awc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥
/* Copy L to U (used as workspace) */
for (i = 1; i <= m; ++1)
{
for (3 = 1; j <= 1i; ++3)
{

U(i,j).re = A(i,j).re;
U(i,3).im = A(1,3).im;

/* Set the strictly upper triangular part of L to zero *x/
for (1 = 1; 1 <= m-1; ++1i)

{
for (j = i+1l; j <= m; ++3j)
{
U(i,j).re = 0.0;
U(i,j).im = 0.0;
b
}

/* Bidiagonalize L */

[NP3645/7]

fO8kuc

JO8kuc.7

fO8kuc NAG C Library Manual

f08ksc(order, m, m, u, pdu, d, e, tauq, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3
/* Update P**H, storing the result in PH */
f08kuc (order, Nag_FormP, Nag_LeftSide, Nag_ConjTrans,
m, n, m, u, pdu, taup, ph, pdph, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08kuc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form and matrix P#**H */
Vprintf ("\nExample 2: bidiagonal matrix B\n%s\n",
"Diagonal") ;
for (i = 1; i <= m; ++1i)
Vprintf ("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf ("\nSuper-diagonal\n") ;
for (1 =1; 1 <=m - 1; ++1)
Vprintf ("%8.4f%s", el[i-1], i%8==0 2"\n":" ");
Vprintf ("\n\n") ;
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, ph, pdph, Nag_BracketForm, "%7.4f",
"Example 2: matrix P**H", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
¥
END:
if (a) NAG_FREE(a);
if (ph) NAG_FREE (ph);
if (tau) NAG_FREE (tau);
if (taup) NAG_FREE (taup);
if (tauqg) NAG_FREE (tauq) ;
if (u) NAG_FREE(u);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);
¥

return exit_status;

9.2 Program Data

f08kuc Example Program Data

6 4 :Values of M and N, Example 1
(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A

3 4 :Values of M and N, Example 2
0.28,-0.36) (O (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
0 0 (-0 0)

.36,-0.51) (- .75, 0.47) (-0.08, 1.01 :End of matrix A

f08kuc.8 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08kuc

9.3 Program Results

fO08kuc Example Program Results

Example 1: bidiagonal matrix B
Diagonal

-3.0870 =-2.0660 -1.8731 -2.0022
Super-diagonal

2.1126 -1.2628 1.6126

Example 1: matrix Q

1 2 3 4
1 (-0.3110, 0.2624) (0.6521, 0.5532) (0.0427, 0.0361) (-0.2634,-0.0741)
2 (0.3175,-0.6414) (0.3488, 0.0721) (0.2287, 0.0069) (0.1101,-0.0326)
3 (-0.2008, 0.1490) (-0.3103, 0.0230) (0.1855,-0.1817) (-0.2956, 0.5648)
4 (0.1199,-0.1231) (-0.0046,-0.0005) (-0.3305, 0.4821) (-0.0675, 0.3464)
5 (-0.2689,-0.1652) (0.1794,-0.0586) (-0.5235,-0.2580) (0.3927, 0.1450)
6 (-0.3499, 0.0907) (0.0829,-0.0506) (0.3202, 0.3038) (0.3174, 0.3241)

Example 2: bidiagonal matrix B
Diagonal

2.7615 1.6298 -1.3275
Super-diagonal

-0.9500 -1.0183

Example 2: matrix P#*#*H

2 (0.4148, 0.1795 (0.1368,-0.3976 (0.6885, 0.3386 (0.1667,-0.0494

1 2 3 4
1 (-0.1258, 0.1618) (-0.2247, 0.3864) (0.3460, 0.2157) (-0.7099,-0.2966)
))))
3 (0.4575,-0.4807) (-0.2733, 0.4981) (-0.0230, 0.3861) (0.1730, 0.2395)

[NP3645/7] f08kuc.9 (last)

	f08kuc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	side
	trans
	m
	n
	k
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

