
NAG C Library Function Document

nag_zunmbr (f08kuc)

1 Purpose

nag_zunmbr (f08kuc) multiplies an arbitrary complex matrix C by one of the complex unitary matrices Q
or P which were determined by nag_zgebrd (f08ksc) when reducing a complex matrix to bidiagonal form.

2 Specification

void nag_zunmbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,
Nag_TransType trans, Integer m, Integer n, Integer k, const Complex a[],
Integer pda, const Complex tau[], Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zunmbr (f08kuc) is intended to be used after a call to nag_zgebrd (f08ksc), which reduces a complex

rectangular matrix A to real bidiagonal form B by a unitary transformation: A ¼ QBPH . nag_zgebrd

(f08ksc) represents the matrices Q and PH as products of elementary reflectors.

This function may be used to form one of the matrix products

QC; QHC; CQ; CQH; PC; PHC; CP or CPH;

overwriting the result on C (which may be any complex rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

Note: in the descriptions below, r denotes the order of Q or PH : if side ¼ Nag LeftSide, r ¼ m and if

side ¼ Nag RightSide, r ¼ n.

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: vect – Nag_VectType Input

On entry: indicates whether Q or QH or P or PH is to be applied to C as follows:

if vect ¼ Nag ApplyQ, Q or QH is applied to C;

if vect ¼ Nag ApplyP, P or PH is applied to C.

Constraint: vect ¼ Nag ApplyQ or Nag ApplyP.

3: side – Nag_SideType Input

On entry: indicates how Q or QH or P or PH is to be applied to C as follows:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kuc

[NP3645/7] f08kuc.1

if side ¼ Nag LeftSide, Q or QH or P or PH is applied to C from the left;

if side ¼ Nag RightSide, Q or QH or P or PH is applied to C from the right.

Constraint: side ¼ Nag LeftSide or Nag RightSide.

4: trans – Nag_TransType Input

On entry: indicates whether Q or P or QH or PH is to be applied to C as follows:

if trans ¼ Nag NoTrans, Q or P is applied to C;

if trans ¼ Nag ConjTrans, QH or PH is applied to C.

Constraint: trans ¼ Nag NoTrans or Nag ConjTrans.

5: m – Integer Input

On entry: mC , the number of rows of the matrix C.

Constraint: m � 0.

6: n – Integer Input

On entry: nC , the number of columns of the matrix C.

Constraint: n � 0.

7: k – Integer Input

On entry: if vect ¼ Nag ApplyQ, the number of columns in the original matrix A; if
vect ¼ Nag ApplyP, the number of rows in the original matrix A.

Constraint: k � 0.

8: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least

maxð1; pda�maxð1;minðr; kÞÞÞ when vect ¼ Nag ApplyQ and order ¼ Nag ColMajor;

maxð1; pda� rÞ when vect ¼ Nag ApplyQ and order ¼ Nag RowMajor;

maxð1; pda� rÞ when vect ¼ Nag ApplyP and order ¼ Nag ColMajor;

maxð1; pda�minðr; kÞÞÞ when vect ¼ Nag ApplyP and order ¼ Nag RowMajor.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zgebrd
(f08ksc).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor,
if vect ¼ Nag ApplyQ, pda � maxð1; rÞ;
if vect ¼ Nag ApplyP, pda � maxð1;minðr; kÞÞ;

if order ¼ Nag RowMajor,
if vect ¼ Nag ApplyQ, pda � maxð1;minðr; kÞÞ;
if vect ¼ Nag ApplyP, pda � maxð1; rÞ.

10: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least maxð1;minðr; kÞÞ.

f08kuc NAG C Library Manual

f08kuc.2 [NP3645/7]

On entry: further details of the elementary reflectors, as returned by nag_zgebrd (f08ksc) in its
parameter tauq if vect ¼ Nag ApplyQ, or in its parameter taup if vect ¼ Nag ApplyP.

11: c½dim� – Complex Input/Output

Note: the dimension, dim, of the array c must be at least maxð1; pdc� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: the matrix C.

On exit: C is overwritten by QC or QHC or CQ or CQH or PC or PHC or CP or CPH as
specified by vect, side and trans.

12: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor, pdc � maxð1;mÞ;
if order ¼ Nag RowMajor, pdc � maxð1; nÞ.

13: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, k = hvaluei.
Constraint: k � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdc ¼ hvaluei, m ¼ hvaluei.
Constraint: pdc � maxð1;mÞ.
On entry, pdc ¼ hvaluei, n ¼ hvaluei.
Constraint: pdc � maxð1; nÞ.

NE_ENUM_INT_2

On entry, vect ¼ hvaluei, k ¼ hvaluei, pda ¼ hvaluei.
Constraint: if vect ¼ Nag ApplyQ, pda � maxð1; rÞ;
if vect ¼ Nag ApplyP, pda � maxð1;minðr; kÞÞ.
On entry, vect ¼ hvaluei, k ¼ hvaluei, pda ¼ hvaluei.
Constraint: if vect ¼ Nag ApplyQ, pda � maxð1;minðr; kÞÞ;
if vect ¼ Nag ApplyP, pda � maxð1; rÞ.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kuc

[NP3645/7] f08kuc.3

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

kEk2 ¼ Oð�ÞkCk2;

where � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately

8nCkð2mC � kÞ, if side ¼ Nag LeftSide and mC � k;
8mCkð2nC � kÞ, if side ¼ Nag RightSide and nC � k;

8m2
CnC , if side ¼ Nag LeftSide and mC < k;

8mCn
2
C , if side ¼ Nag RightSide and nC < k;

where k is the value of the parameter k.

The real analogue of this function is nag_dormbr (f08kgc).

9 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or LQ factorization of A.

In the first example, m > n, and

A ¼

0:96� 0:81i �0:03þ 0:96i �0:91þ 2:06i �0:05þ 0:41i
�0:98þ 1:98i �1:20þ 0:19i �0:66þ 0:42i �0:81þ 0:56i
0:62� 0:46i 1:01þ 0:02i 0:63� 0:17i �1:11þ 0:60i

�0:37þ 0:38i 0:19� 0:54i �0:98� 0:36i 0:22� 0:20i
0:83þ 0:51i 0:20þ 0:01i �0:17� 0:46i 1:47þ 1:59i
1:08� 0:28i 0:20� 0:12i �0:07þ 1:23i 0:26þ 0:26i

1
CCCCCCA

0
BBBBBB@

:

The function first performs a QR factorization of A as A ¼ QaR and then reduces the factor R to

bidiagonal form B: R ¼ QbBP
H . Finally it forms Qa and calls nag_zunmbr (f08kuc) to form Q ¼ QaQb.

In the second example, m < n, and

A ¼
0:28� 0:36i 0:50� 0:86i �0:77� 0:48i 1:58þ 0:66i

�0:50� 1:10i �1:21þ 0:76i �0:32� 0:24i �0:27� 1:15i
0:36� 0:51i �0:07þ 1:33i �0:75þ 0:47i �0:08þ 1:01i

1
A

0
@ :

The function first performs an LQ factorization of A as A ¼ LPH
a and then reduces the factor L to

bidiagonal form B: L ¼ QBPH
b . Finally it forms PH

b and calls nag_zunmbr (f08kuc) to form

PH ¼ PH
b P

H
a .

f08kuc NAG C Library Manual

f08kuc.4 [NP3645/7]

9.1 Program Text

/* nag_zunmbr (f08kuc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ic, j, m, n, pda, pdph, pdu;
Integer d_len, e_len, tau_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *a=0, *ph=0, *tau=0, *taup=0, *tauq=0, *u=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define U(I,J) u[(J-1)*pdu + I - 1]
#define PH(I,J) ph[(J-1)*pdph + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define U(I,J) u[(I-1)*pdu + J - 1]
#define PH(I,J) ph[(I-1)*pdph + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08kuc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
for (ic = 1; ic <= 2; ++ic)

{
Vscanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdph = n;
pdu = m;

#else
pda = n;
pdph = n;
pdu = m;

#endif
tau_len = n;
taup_len = n;
tauq_len = n;
d_len = n;
e_len = n - 1;

/* Allocate memory */
if (!(a = NAG_ALLOC(m * n, Complex)) ||

!(ph = NAG_ALLOC(n * n, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(taup = NAG_ALLOC(taup_len, Complex)) ||
!(tauq = NAG_ALLOC(tauq_len, Complex)) ||
!(u = NAG_ALLOC(m * m, Complex)) ||

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kuc

[NP3645/7] f08kuc.5

!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
if (m >= n)

{
/* Compute the QR factorization of A */
f08asc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08asc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy A to U */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

{
U(i,j).re = A(i,j).re;
U(i,j).im = A(i,j).im;

}
}

/* Form Q explicitly, storing the result in U */
f08atc(order, m, n, n, u, pdu, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08atc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy R to PH (used as workspace) */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
PH(i,j).re = A(i,j).re;
PH(i,j).im = A(i,j).im;

}
}

/* Set the strictly lower triangular part of R to zero */
for (i = 2; i <= n; ++i)

{
for (j = 1; j <= MIN(i-1,n-1); ++j)

{
PH(i,j).re = 0.0;
PH(i,j).im = 0.0;

}
}

/* Bidiagonalize R */
f08ksc(order, n, n, ph, pdph, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Update Q, storing the result in U */
f08kuc(order, Nag_FormQ, Nag_RightSide, Nag_NoTrans,

m, n, n, ph, pdph, tauq, u, pdu, &fail);

f08kuc NAG C Library Manual

f08kuc.6 [NP3645/7]

if (fail.code != NE_NOERROR)
{

Vprintf("Error from f08kuc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print bidiagonal form and matrix Q */
Vprintf("\nExample 1: bidiagonal matrix B\nDiagonal\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= n - 1; ++i)

Vprintf("%8.4f%s", e[i-1], i%8 == 0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, u, pdu, Nag_BracketForm, "%7.4f",
"Example 1: matrix Q", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
{

/* Compute the LQ factorization of A */
f08avc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08avc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy A to PH */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

{
PH(i,j).re = A(i,j).re;
PH(i,j).im = A(i,j).im;

}
}

/* Form Q explicitly, storing the result in PH */
f08awc(order, m, n, m, ph, pdph, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08awc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy L to U (used as workspace) */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= i; ++j)

{
U(i,j).re = A(i,j).re;
U(i,j).im = A(i,j).im;

}
}

/* Set the strictly upper triangular part of L to zero */
for (i = 1; i <= m-1; ++i)

{
for (j = i+1; j <= m; ++j)

{
U(i,j).re = 0.0;
U(i,j).im = 0.0;

}
}

/* Bidiagonalize L */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kuc

[NP3645/7] f08kuc.7

f08ksc(order, m, m, u, pdu, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ksc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Update P**H, storing the result in PH */
f08kuc(order, Nag_FormP, Nag_LeftSide, Nag_ConjTrans,

m, n, m, u, pdu, taup, ph, pdph, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kuc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print bidiagonal form and matrix P**H */
Vprintf("\nExample 2: bidiagonal matrix B\n%s\n",

"Diagonal");
for (i = 1; i <= m; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= m - 1; ++i)

Vprintf("%8.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, ph, pdph, Nag_BracketForm, "%7.4f",
"Example 2: matrix P**H", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (ph) NAG_FREE(ph);
if (tau) NAG_FREE(tau);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
if (u) NAG_FREE(u);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);

}
return exit_status;

}

9.2 Program Data

f08kuc Example Program Data
6 4 :Values of M and N, Example 1

(0.96,-0.81) (-0.03, 0.96) (-0.91, 2.06) (-0.05, 0.41)
(-0.98, 1.98) (-1.20, 0.19) (-0.66, 0.42) (-0.81, 0.56)
(0.62,-0.46) (1.01, 0.02) (0.63,-0.17) (-1.11, 0.60)
(-0.37, 0.38) (0.19,-0.54) (-0.98,-0.36) (0.22,-0.20)
(0.83, 0.51) (0.20, 0.01) (-0.17,-0.46) (1.47, 1.59)
(1.08,-0.28) (0.20,-0.12) (-0.07, 1.23) (0.26, 0.26) :End of matrix A
3 4 :Values of M and N, Example 2

(0.28,-0.36) (0.50,-0.86) (-0.77,-0.48) (1.58, 0.66)
(-0.50,-1.10) (-1.21, 0.76) (-0.32,-0.24) (-0.27,-1.15)
(0.36,-0.51) (-0.07, 1.33) (-0.75, 0.47) (-0.08, 1.01) :End of matrix A

f08kuc NAG C Library Manual

f08kuc.8 [NP3645/7]

9.3 Program Results

f08kuc Example Program Results

Example 1: bidiagonal matrix B
Diagonal
-3.0870 -2.0660 -1.8731 -2.0022

Super-diagonal
2.1126 -1.2628 1.6126

Example 1: matrix Q
1 2 3 4

1 (-0.3110, 0.2624) (0.6521, 0.5532) (0.0427, 0.0361) (-0.2634,-0.0741)
2 (0.3175,-0.6414) (0.3488, 0.0721) (0.2287, 0.0069) (0.1101,-0.0326)
3 (-0.2008, 0.1490) (-0.3103, 0.0230) (0.1855,-0.1817) (-0.2956, 0.5648)
4 (0.1199,-0.1231) (-0.0046,-0.0005) (-0.3305, 0.4821) (-0.0675, 0.3464)
5 (-0.2689,-0.1652) (0.1794,-0.0586) (-0.5235,-0.2580) (0.3927, 0.1450)
6 (-0.3499, 0.0907) (0.0829,-0.0506) (0.3202, 0.3038) (0.3174, 0.3241)

Example 2: bidiagonal matrix B
Diagonal

2.7615 1.6298 -1.3275
Super-diagonal
-0.9500 -1.0183

Example 2: matrix P**H
1 2 3 4

1 (-0.1258, 0.1618) (-0.2247, 0.3864) (0.3460, 0.2157) (-0.7099,-0.2966)
2 (0.4148, 0.1795) (0.1368,-0.3976) (0.6885, 0.3386) (0.1667,-0.0494)
3 (0.4575,-0.4807) (-0.2733, 0.4981) (-0.0230, 0.3861) (0.1730, 0.2395)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kuc

[NP3645/7] f08kuc.9 (last)

	f08kuc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	side
	trans
	m
	n
	k
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

